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Preface

The purpose of ‘his thesis was to study the effects of variable
inner wall temperature conditions in triggering or suppressing complex
multicellular flow fields within a narrow horizontal annulus. Such
research has practical applications in technological systeés that employ
the annular geometry to cool or insulate critical components. Some
examples include nuclear reactor design, materials processing, aircraft
cabin insulation and pressui 1zed-gas underground electric transmission
cables.

In all, ten inner cylinder temperature distributions were examined,
offering insight into the{Aature of complex annular convective flow
patterns and the thermal conditions that cause them. Since this reéearch
dealt only with low Prandtl-number fluids, follow-on studies of variable
Prandtl-number effects should be undertaken to further explore this
issue.

In preparing this thesis, I am deeply grateful for the assistance of
others who helped see me through this project. I wish to thank my
faculty advisor, Capt Daniel B. Fant, whose superb technical expertise in
this area Illled’many gaps and whose dedicated assistance made this
effort a valuable learning experience. I also wish to thank the computer
science techniciéns of Systems Research Laboratories for answerihg all my
questions about the ISC computer system. Finally, I want to thank my
wife-‘t'or her understanding and support during all those long da'ys

and nights I had to spend on the computer.

David L. Bennett
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Abstract

The purpose of this study was to examine natural convection within a
narrow horizontal annulus subject to variable inner cylinder temperature
distributions. Both numerical and analytical approaches were taken in
determining the effects of variable temperature conditions imposed on the
inner cylinder in triggering or suppressing multicellular flow
instabilities.

The two-dimensional Navier-Stokes equations are simplified into
boundary-layer equations for the assumptions of large Rayleigh number,
small annular gap, and small Prandtl number. These 2-D unsteady
boundary-layer equations are discretized using finite~-differencing
techniques. Numerical solutions to these governing equations are then
obtained by using a stable second-order, fully-implicit, time-accurate,
Gauss-Siedel iterative procedure.

In addition, analytical steady-state solutions to these simplified
equations are obtained using perturbation methods. For most inner
cylinder temperature distributions considered in the steady flow regime,
these analytical results yield excellent agreement with numerical
results. Although both schemes predict the formation of thermal-like
instabilities induced by localized hot and cold spots in the horizontal
annular regions, the analytical model failed to predict the steady-state
sulticellular hydrodynamic instabilities found numerically for the sin w

temperature distribution at G = 4.95 in the vertical portions of the

xiii




annulus. The analytical model also fails to capture unsteady
multicellullar flow behavior found numerically for the sinusoidal
temperature distribution at & = 4.99. Limited unsteady numerical results
for this test case indicated oscillatory behavior in the strength of this

flow field.
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VARIABLE WALL TEMPERATURE EFFECTS ON MULTICELLULAR NATURAL
CONVECTION IN A HORIZONTAL ANNULUS

1. Introduction

The study of natural convection in concentric cylindrical annuli
receives considerable attention from researchers due to its practical
applications in the areas of nuclear reactor design, afrcraft cabin
insulation, cooling of electronic equipment, thermal storage systems, and
material processing. The horizontal concentric cylinder geometry is used
in pressurized-gas underground electric transmission cables (Kuehn and
Goldstein, 1975).

The purpose of this study was to examine the effects of variable
wall temperature conditions on natural convective flows in a narrow
horizontal annulus. Of particular interest is the effects of variable
inner-cylinder wall temperature distributions in suppressing or
trigeering hydrodynamic instabilities that give rise to the formation of
convective cell patterns within the annulus. Understanding the boundary
conditions that give rise to these multicellular flow fields is
important, since convective cells are the primary cooling mechanism for
the annular geometry. Such knowledge may aid in the design of efficient
concentric-cylinder cooling devices or related technological systeas.

This thesis involves two approaches in accomplishing the stated
objective.

First, the 2-D Navier-Stokes equations are simplified into




boundary-layer equations for the conditions of large Rayleigh number,
small annular gap, and small Prandt]l number. These 2-D unsteady
boundary-layer equations are discretized using finite-differencing
techniques. The governing equations in discretized fora are then solved
using the AFIT VAX 8650 computer system to obtain the flow field.

The second approach involves determining analytical steady-state
solutions to these simplified equations using perturbation methods.
These solutions serve to support and compare related numerical results.

Before beginning a detailed discussion of these topics, a review of
the related literature is presented to examine recent work in this area
of study. Chapters Il - IV discuss the background theory and analysis of
this problem, and Chapters V and VI present the key results and

conclusions.

Literature Review

The natural convection of flow between horizontal concentric
cylinders has been the subject of many investigations. In most of these,
the focus has been on numerical studies of fluids with low Rayleigh
numbers or high Prandtl numbers of order 1 or larger that show close
agreement with experimental work. The convective behavior of low
Prandt]l number fluids such as liquid metals has received little
attention. These fluids are often used as the working fluid in several
powergenerating cycles due to their excellent heat-transfer
characteristics.

This thesis considers natural convection of high Rayleigh number/low
Prandtl number fluids in a narrow horizontal annulus with variable

temperature distributions imposed on the inner cylinder wall. By
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contrast, most recent work deals with isothermal boundary conditions,
with numerical work incorporating variable temperature effects nearly
nonexistent. Analytical approaches in modeling this flow regime are
equally rare.

This literature review covers three main topics; the analytical
approaches, the numerical studies, and the experimental analyses.

Analytical Studies. Only two analytical studies of natural
convection of low Prandtl-number fluids between concentric cylinders were
found. Both used perturbation methods to model high Rayleigh number flow
fields within the annulus.

Using the assumption of small annular gap width, Fant (1987),
derived a three-term perturbation expansion to obtain steady-state
solutions for the high Rayleigh number/low Prandtl number flow regime.

He obtained stream function and vorticity solutions that agreed well with
pretransitional numerical flow-field results., Since this thesis adopts
both his analytical and numerical methods, discussion is deferred to the
next three chapters for a detailed treatment of this procedure.

Custer and Shaughnessy (1977) studied natural convection of low
Prandtl-number fluids within a horizontal annulus by solving the
dimensionless thermal energy and vorticity equations with a double

perturbation expansion in powers of Grashof and Prandt] numbers. The

temperature and stream function expansions were as follows:

[ +} Q0
(r,8) = Z z erd o T, (r,8) (1.1a) -
ToxTo

r, Jk
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The authors described the evolution of the flow for several radjus
ratios, where in both cases the flow was composed of a single eddy in
each half-annulus for low Grashof number. As Grashof number was
increased, they observed that the eddy in high Prandtl-number fluids
fell, while the eddy in low Prandtl number fluids rose. Custer and
Shaughnessy indicated that only further experimental and numerical
studies of the unsteady flow regime could resolve multicellular flow
behavior.

Numerijcal Studies. As previously stated, the majority of the
numerical studies of natural convection in horizontal annuli have dealt
with low Rayleigh-number/high Prandl-number flows under isothermal
boundary conditions. Special emphasis shall be placed on the formation
and nature of multicellular flow fields and the numerical schemes which
were used to model them.

Charrier-Mojtabi et al. (1978) studied natural convection flows
between two horizontal concentric annuli with constant surface
temperatures. They solved the problem using an implicit alternating
direction scheme with a vorticity and stream function formulation.
Rayleigh numbers varying between 102 and S5 x 10“, radius ratios between
1.2 and S and Prandt] numbers of 0.7 and 0.02 were examined. For R = 1.2
and Rayleigh numbers of 6000 and 7000, no multicellular flow fields
resulted using air as the fluid (Pr = 0.7). However, for Pr = 0.02 and
R = 2, the flow regime became multicellular for large Rayleigh numbers

and began to oscillate, as the flow became unsteady.




Ty

a

Rao et al. (1985) studied filow patterns of natural convection {n
horizontal cylindrical annuli. They used an unsteady formulation of the
2-D energy and vorticity-stream function equations which were solved by
using an ADI scheme with central-differencing. A radius ratio of 1.175
and a Rayleigh number of 4,000 resulted in the formation of two small
counter-rotating cells just above the main kidney-shaped cells in the
upper annulus. Their results contrast with those obtained by

Charrier-Mojtabi et al. using the ADI method, who failed to achieve

nulticellular flow patterns in their study of narrow-gap geometries.

Date (1985) studied natural convection in a horizontal annular gap
in which the isothermal inner cylinder was hotter than the cool outer
cylinder. His numerical prediction scheme involved solving the governing
equations for the primitive variables of pressure, velocities and
temperatures. This is in contrast to most other numerical schemes which
use the stream function-vorticity equations to generate solutions. His
numerical predictions for natural convection heat transfer for a gap
width/internal diameter (L/Di) ratio of 0.15 for air compare poorly with
conputed heat transfer rates of Boyd (1981) and Grigull and Hauf (1966).

Farouk and Cuceri (1981) examined both laminar and turbulent natural
convection between horizontal concentric cylinders held at constant
temperatures. Solutions for the laminar flow case were obtained up to a
Rayleigh number (based on gap width) of 105. Turbulent flow results were
obtained for Rayleigh numbers of 106 - 107. For the laminar case, the
2-D elliptic partial differential equations of vorticity, stream

function, and temperature with specified boundary conditions were solved.

An outside-to-inside diameter ratio of 2.6 was used with air in the




numerical formulation. For these conditions, the typical crescent-shaped
cellular pattern emerged which has been found in previous studies.
Similar fluid circulation patterns were obtained in the turbulent
studies. However, the location of maximum stream function was found to
move upward.

Kumar (1988) investigated natural convection in horizontal annuli
for a wide range of Rayleigh numbers extending from conduction to the
convection~dominated steady flow regime for diameter ratios of 1.2 - 10.
Here, the inner cylinder is heated by a constant heat flux and the outer
cylinder is isothermally cooled. As found by other researchers, a
crescent-shaped eddy dominated for the small diameter ratioo, while a
kidney-shaped flow pattern emerged for a diameter ratio of 5. At high
Rayleigh numbers, as the diameter ratio is increased, more stagnant fluid
exists at the bottom of the annulus coincident with the prescence of the
kidney-shaped flow pattern.

Fusegi and Farouk (1986) conducted a three-dimensional analysis for
natural convective flows of air in an annulus having differentially
heated concentric isothermal horizontal cylinders using the
vorticity-velocity formulation. The Rayleigh numbers used were 103 and
10“. The ratio of the gap width to the inner cylinder radius studied was
1.6. The authors pointed out that 3-D numerical solutions were better
suited for modeling convective flow fields since 2-D numerical studies
could not capture all the important flow characteristics of a confined
fluid. Flow field results were graphically compared for both cases.
Radial velocity plots at ¢ = 180 indicated that the 3-D flow motion is

much more vigorous than the 2-D case due to the formation of a




three-dimensional plume in this annular region. This was but one
phenomenon Fusegi and Farouk contended that the 2-D solutions overlooked.

Kumar and Keyhani (1988) obtained detailed numerical results of
natural convection in a horizontal annulus with a constant heat flux
enforced on the inner cylinder and an isothermal outer wall. Prandtl
numbers studied were 0.7, 5.0 and 100 for radius ratios of 1,8 < R < i5.
The Navier-Stokes equations were recast as vorticity-stream function
equations. The vorticity transport equation and the energy equation were
solved using the false transient Alternating Direction Implicit (ADIL)
method, and the stream function equation was solved by the successive
over-relaxation (SOR) method. Prandtl number effects on flow field
characteristics in horizontal annuli were found to be insignificant for
Pr > 0.7 for the range of radius ratios studied. The results also
indicated that the important flow parameter for heat transfer due to
convection only is the conventional Rayleigh number.

Experimental Studies. Although many articles on experimental
studies of natural convection within enclosures exist in the literature,
only those that deal with the concentric cylinder geometry are discussed
below. As with numerical studies of this problem, experimental work has
dealt mainly with the isothermal condition imposed on the annulus, while
variable inner cylinder wall temperature conditions are scarce or
nonexjistent.

Kuehn and Goldstein (1976) performed an experimental and numerical
study of natural convection within horizontal concentric cylinders. The
experimental results were obtained using a Mach-Zehnder interferometer to

visualize the temperature field in the enclosure which can be analyzed to




determine the local heat flux. The flow field is assumed steady with no
axial variation in properties, except for end effects. The cylinders had
an annular gap width/inner cylinder diameter of 0.8. Two sets of
experimental runs were made; one with air, the other using water.

Quantities obtained experimentally included temperature
distributions and local and averaged heat-transfer coefficients. The
numerical solutions confirmed these experimental results, and provided
the related velocity distributions and extended the results to lower
Rayleigh numbers. The temperature distributions for both air and water
were nearly identical at similar Rayleigh numbers. The flow was steady
for all Rayleigh numbers investigated (Ra =< 105).

Kuehn and Goldstein (1978) later examined the effects of
eccentricity and Rayleigh number on natural convection heat transfer
through a horizontal cylindrical annulus. They found that eccentricity
of the inner cylinder caused large changes in the local heat transfer on
both cylinders, but the overall heat transfer coefficient for an
eccentric geometry is within 10 percent of that for the concentric case
at the same Rayleigh number. At large Rayleigh numbers, the flow was
observed to become unsteady first in the plume above the inner cylinder.
This unsteadiness was seen to increase as the Rayleigh number was
increased. This turbulence rapidly decayed as the flow moved downward
along the outer cylinder such that the bottom half of the annulus
remained virtually steady. Hence, laminar and turbulent flows were seen
to exist in the annulus at the same time.

Sun and Zhang (1986) made an experimental study of natural

convection heat transfer in concentric and eccentric horizontal




7
1

cylindrical enclosures. They employed a Mach-Zehnder interferometer to
gauge the temperature distribution within the annulus. The objective of
this study was to determine the effect of the diameter ratio K and the
eccentricity £ on the heat transfer in the horizontal cylindrical
annulus. Experiments were performed using air at atmospheric pressure
with radius ratios K varying from 1.77 to 2.68 and eccentricities from
-0.50 to 0.35.

The local ‘and overall heat transfer coefficients were obtained by
analyzing the interferograms over a range of Grashof anumbers froa
4.6 x 102 to 3.8 x 10“. The shape of the interferometer fringes
indicated that the thermal boundary layer for air formed around the inner
cylinder and partly at the upper surface of the outer cylinders. For the
case of £ - 0,5, temperature inversion and thermal boundary-layer
separation effects were strongest in the upper portion of the annuli, and
to a lesser degree for £ = 0 and £ = 0.353. The stagnation zone at the
annulus bottom decreased when £ increased from negative to positive
values. The thermal plume formed over the top of the inner cylinder
became more prominent with increasing eccentricity, since there was more
space and less flow resistance in the upper portion of the annulus.

Rao et al. (1985) experimentally obtained results for steady 3-D
natural convection in a horizontal cylindrical annulus. The objective
was to confirm the complex structure of the 3-D numerical results
obtasined by the authors of this paper. Flow patterns were examined for
the large Rayleigh number/large Prandt]l number regime. An increase in
the number of celis observed with incresasing Ra confirmed numerical

studies of similar flows.




I]. Mathematical Analysis

In this chapter, a vorticity-stream function formulation of the
Navier-Stokes equations is described in dimensionless form (based on
Fant, 1987). By using this approach, the pressure terms are completely
eliminated while automatically satisfying the conservation of mass
principle. In addition, the resulting stream function and vorticity
contours are useful for visualizing and analyzing the flow field. The

dimensionless equations in final form are given in Eqs (2.26 to 2.28).

The Physical Model

a. The flow is unsteady and two-dimensional (see Figure 2.1).

b. The fluid is initially at rest.

c. The cylinders are assumed horizontal with an {sothermal outer
cylinder and a variable temperature distribution imposed on the
inner cylinder.

d. Laminar fluid motion is induced by buoyancy effects. The fluid
is Newtonian.

e. Al]l material properties are assumed constant. Density
variations are allowed to occur via the Boussinesq

approximation.

Ihe Dimensional Formulation

Governing Equations Using the Stream Function-Vorticity Approach.

The vorticity-transport equation is derived by taking the curl of the

Navier-Stokes equations. This equation can be written as:

10




Figure 2.1. 2-D concentric cylinder geometry
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~ .

—+ (v Vw=(w- VvV VXFy (2.1)
ot

The bar over the variables signifies dimensional quantities. w and v
represent the vorticity and velocity vectors, respectively. The left
side of this equation desribes the total rate change of particle
vorticity. The term (w * ¥)y is jdentically zero for 2-D flows due to
the vorticity vector always being perpendicular to the plane of flow.
The tera vvzﬁ represents the net rate of vorticity diffusion due to
viscous effects. The last term, ¥ x ?B' is the rate of internal
vorticity generation due to body forces, resulting from large density
perturbations in natural convective flows. The fact that pressure does
not appear explicitly in Eq (2.1) enables the determination of the

vorticity and stream function (velocity) fields without prior knowledge

of the pressure distridbution. Using the Boussinesq approximation for the

net body force:

-86(T - 1))T = -g(T - T)cos ¥ Sr + gA(T - T))sin ¥ Qw (2.2)

where {3 is the coefficient of thermal expansion. The final form of the

vorticity-transport equation is:

2

1 a(f,w)
—_— -

ot r or,y)

_ 0T cos y OT )
=8ﬂ[sinw—:+ -—]+vV2u (2.3)

or r oy

and the thermal-energy and stream function equations are:

aT 1 &, 1)

— + - — = avzi' (2.4)
ot r or,w)
and W=V . (2.5)
12




et

In the above equations, r and ¥ represent the radial and angular
coordinates. T is the temperature and t denotes time. v and a denote
the momentum and thermal diffusivities, respectively. The radial
velocity, u, and the angular velocity, v, have been written in terms of

the stream function, f, defined as:

-1 0% _of
U= —— and v=— . (2.6)
r oy or

The number of dependent variables has now been reduced by one. The
convective terms are then given in terms of the Jacobian, &(P,Q)/8(x,y),
where

&P,Q) OoP & P X

2 ——— m e — . (2.7)

The three coupled governing equations (2.3, 2.4 and 2.5) describe
the vorticity, temperature and stream function for the horizontal
annulus.

Boundary Conditions. For temperature boundary conditions, the outer
cylinder is assumed to be isothermal, while the inner cylinder has a
variable temperature distribution that is a function of the angular

position.

and T = To at r=b . (2.8)

Both u and v are identically zero at both cylinder walls due to the

no-slip condition, yielding the boundary conditions:

13




at r = a and r = b, (2.9)

To ensure a computational continuous condition in the complete annulus
(0 - 2r1) the following boundary conditions (in y) are enforced at zero

and 2n radians:

¢ = ¢2"
o9 o¢ _
and — 2 — for a <r < b, (2.10)
oy |0 oy |2n

where ¢ represents the dependent variable for temperature, vorticity, or
stream function.

Initial Conditions. Since there is no fluid motion initially,

f=w=0andT-= T (2.11)
throughout the annulus, except at the walls where:
T=T(y) and T =1, (2.12)

is enforced at r = a and b, respectively.

The Dimensionless Formulatjon

Casting equations in dimensionless form has several advantages.
First, it transforms the mathematical or numerical results into a simpler
form, allowing for better graphical interpretation. Secondly,
measurement scales are no longer an intrinsic part of the physical
quantities, therefore, any laws governing physical variables are valid
for all different measurement systems (Fant, 1987). Finally, when a
problem is nondimensionalized, fewer variables are used and the proper

dimensfonless groups characterizing a particular flow model are usually

14




brought forth.

Coordinate Transformation. The radial coordinate is
nondimensionalized so that the outer boundary at r = b is transformed
into the unit circle, r = 1. The inner boundary, r = a, is transformed

into the pole, r = 0. The following coordinate transformation results:

r-a

Y ¥ =¥ . (2.13)

b - a

The other independent variable, time, scales as

(adl
<

t = (2.14)

.—2 *
a
Governing Equations. The remaining dependent variables can now be

scaled to produce the following:

T - T,
Tz —mm——— (temperature) (2.15)
Tl(w) - To
aal
W= — (vorticity) (2.16)
1 %4
£
f =~ (stream function) (2.17)
v

Eqs (2.13 to 2.17) are now substituted into Eqs (2.3 to 2.5) resulting in

the following nondimensional governing equations:

Oou 1 -1 &(f,w)
Pr{Cz——*(r‘b—] : }:Pr'vgu

o G a(r,y)
on 1 ,-1 07T
+ G - Ra siny — + cosy [ r + — ] —_— (2.18)
or G oy
15




aT 1 .-t &£,T) 1
c2—+[r+-] =—[v§r] (2.19)
ot G a(r,y) Pr
v§=c2u (2.20)
where
2 ot 1 -1 0 1 -2 &%
- +[r+-] —+[:+-] —
1 ¢ or ¢t ot
Also,
v
Pr = - (Prandt]l number) (2.21)
[« 3
gﬂaJ[TI-IOJ
Ra = ; (Rayleigh number (2.22)
va based on the inner
radius, a)
b -a
and G = (gap number) . (2.23)
a

The three dimensionless parameters that arise from this analysis are G,
Pr and Ra. These key variables are used to simulate various flow
conditions and geometries. The magnitude of the Rayleigh number reflects
the ratio of destabilizing buoyant forces to the more stabilizing viscous
forces. It also predicts the onset of thermal and/or hydrodynamic
instability. The Prandtl number characterizes the fluid and the gap
number defines the annular geometry.

In deriving Eqs (2.18 to 2.20), the variables w, f and t are

non-dimensionalized with v instead of . This was done in order to

reflect a thermal-diffusion dominated energy equation for small Prandtl

16




numbers, which was the focus of this study. For further details on this

procedure see Fant (1987).

In Eqs (2.18 to 2.20) the Jacobian terms can be expressed in terms

of the velocity variables, u and v, where

-1 1 \-10f a
u= — [ r + - ] —=u ['— ] (radial velocity) (2.24)
G G oy v
and
1f a
Vz-—-==z2V [ —-] (tangential velocity) (2.25)
Gr v

With these substitutions, the dimensionless governing equations become:
Energy:

2 ot ot 1 -1 T
G" — + uG — + vG [ I + ~ ] —_
ot ar oy

1 021 1 -1 07T 1 .-2 ozr
=—1—3 + [ r+ - ] ¢ [ r+ - ] —3 (2.26)
Pr

Vorticity:

2 o v 1 -1 O
Pr G—+uG-—-+vC(r+—] —_—
at or G oy

% 'y 1 -1 B
— + UG — ¢+ vG [ r + — ] _—

=P
"ot o ¢t oy

G oy

T 1 -t oT
+ G(Ra) siny — 4+ cosy [r + —] — (2.27)
o

17




Stream Function:

[ ]

i o't 1 .-1 of 1 -2 8% ,
—3 + [ r + — ] — % [ r + - ] —3 = GCw . (2.28)
or ¢ or ¢ oy

The form of Eqs (2.26 - 2.28) facilitates the asymptotic analysis that
follows in Chapter III, where the limits of Ra » @, G + 0 and Pr +» 0 are
separately exanined.

Boundary Conditions. The nondimensional boundary conditions for
this problem are obtained by substituting Eqs (2.13 - 2.17) into Egqs

(2.8 - 2.10). They are at r = 0 (inner cylinder):

T=T/(y
1 8%
W= - —
c? a2
f=0 (2.29)
and at r = 1 (outer cylinder):
T=0
1 o’
W s — ——
¢t or?
f=0 . (2.30)

The computational continuous condition at zero and 2m radians still
applies, except that dimensional quantities are now nondimensionalized.

Injtial Conditions. The dimensionless initial conditions are

virtually identical to Eqs (2.11 and 2.12) for the entire annulus:
Ilfu“so' (2-31)

except at the inner and outer cylinder walls, where:

e
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]
(=4

T = Tl(w) at r
and

T=20 atr=1 . (2.32)
These initial conditions assume a motionless fluid (Ra = 0), where the
problem becomes the steady-state conduction case for a cylindrical
annulus. However, when numerically searching for transitional or
unsteady flow behavior, initial conditions other than zero are used.

These procedures are discussed in Chapter IV.
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. III. Analytical Analysis

In this section, simplified boundary-layer equations are derived
from the 2-D Navier-Stokes equations for certain limiting conditions (see
- Fant, 1987). Analytical steady-state solutions to these equations are

then determined.

Ihe Boundary Layer Equations

Using the governing Navier-Stokes equations as shown in Chapter II
(Eqs 2.26 to 2.28), Fant (1987) obtained the following expansions of the
f dependent variables for the conditions of infinite Rayleigh number

(Ra » ®) and small annular gap width (G -» 0):

/4

- Ral’% + o(ra~YY)

=
[l

v = Ral/2y 4 0(1)

W= Ra3/a; + O(Ral/a)
-
| £ = Ral/%% + o(ra14)
T=T4+ 0(Ra" /%) . (3.1)

Using these expansions, the Navier-Stokes squations reduce to the
following Cartesjan-like, boundary-layer equations:
Energy:
cz = ———2— ‘302)
Pr or

- e—— — g ——

o . { of T of oT } 1 %1
—= + G

ot oy or Or Oy

20
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Vorticity:
- PV 2t & Of du ot . ot
G - Pr —+G - Pr - —— — — =Pr—7+csinw— (3.3)
at oy or or Oy or or
Stream Function:
.
-——-z-zcu (3.10)
or
with related boundary conditions,
T(0,y) = TI(V). T(1l,y) = TD(W) (3.5)
f(o,y) = f(1,¥) = 0 (3.6)
. . 1 8%
w(o,y) = w(l,p) = - =3 (3.7
G" or r = 0,1

Note that the annular curvature effects appear through siny in the
buoyancy term of the vorticity equation above. Variable wall temperature
influence comes in through TI and To in Eq (3.5). These governing
equations are valid for finite Prandtl number. Importantly, the Rayleigh

number and gap number dependency has vanished and is replaced by a single

scaled gap parameter

¢ =Ral’¢ . (3.8)

To maintain the unsteady term, time was scaled as

/2

t =t Ral (3.9)

The scaling of these esquations is based on the scaling typical of laminar

21
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natural convective boundary-layer flows, which come forth under the

conditions of high Rayleigh number and small-gap width, namely,

s~ Rt/ (3.10)

In this study, the finite Prandtl number boundary-layer equations
are simplified for the limiting condition of Pr +» 0, characteristic of
liquid-metal fluids. As discussed in the literature review, other
studies of natural convection in narrow annuli have mostly concentrated
on air as the working fiuid. The study of small Prandtl number effeacts
on flow instability for this particular geometry are rare, especially
with regard to the variable wall temperature influence. The derivation
that follows addresses this issue.

First, let vorticity and stream function scale as:
Ww=zAW4+ ..., (3.11)
£ F 4 ... . (3.12)
The stream function equation (3.4) requires
n Ty (3.13)

With Eqs (3.11) and (3.12), the vorticity equation (3.3) becomes

~ o - OF O OF O
G Prkl — + Pr Ckle - —_—— — —
at oy &r Or Oy
v . ot
= Pr hl —7 + G siny — (3.14)
or or

22




or,

P GA_ XN, “PrAx, ~ G (3.15)

in order to retain the physics of the problem. Balancing the viscous

term with the buoyancy term gives

¢
Al e (3.16)
Pr
then Eq (3.13) yields,
53
A, T — . (3.17)
2 Pr
Eqs (3.16) and (3.17) are then substituted into Eq (3.15) to get
¢ ~ o(ert/Y) (3.18a) .
and t ~ G2, which yields from Eq (3.18a)
t - oert/?y . (3.18b)
With these relations, new scaled variables can be defined:
¢ =c prl/* (3.19a)
and
t =t prl/2 (3.19b)
Therefore,
SR el (3.20)
23




n, ~ B (3.21)
which yield the following expansions:
R A R 1 e (3.22)
£~ et/ E 4 oY (3.23)
T~T+0(Pr) . (3.24)

Scaled gap number and time can now be expressed in terms of the key
dimensjonless variables:

Ra [1/4

c=pVeg- [—] ¢ (3.25)
Pr

- ~ Ra [ 1/2

t = p /2% - [—-] t . (3.26)
Pr

These new scaled variables show a unique dependency on Ra, Pr, G and t.
Substitution of Eqs (3.22 - 3.26) into Eqs (3.2 - 3.4) yields the

following simplified set of governing equations:

Energy:
o't
5 = 0 (3.27)
or
Vorticity:
L OF &  OF oV oy o1
G- — + G -—_—— — — =—3 + G siny — (3.28)
ot oy or IOr 8y or or
Stream Function:
o’r "
_i- = C U . (3-29)
or
24




The energy equation is completely uncoupled from the vorticity equation.

The boundary conditions for the energy equation are as follows,

(0, y)

TI(W) (3.30)

T(1,y) To(w) (3.31)

where TI(V) and To(w) denote inner and outer wall temperatures,
respectively., The isothermal outer wall temperature for this model is

taken to be zero, while the inner wall remains variable, or

(0,y) = TI(W) (3.32)

(3.33)

"
(]

T(1,y)

Integrating equation (3.27) twice yields,

T = Clr + C2 (3.34)

and applying the boundary conditions of Eqs (3.32) and (3.33) results in

the following expansion for temperature across the annulus:

T(r,y) (1, - TI) r+ TI (3.35)

and

) . (3.36)

(To -T

aT
or I

Using Eq (3.36), the governing equations reduce to their final form:

Vorticity.

. OF & OF o o .

C—=+6 - —_—— ¢ — — =—3+Gsinv(‘r°-1‘l) (3.37)
at &y or Or Oy or

Stream Function:

25




&F .
—3 = GWw (3.38)
or
with boundary conditions
F(O,y) = F(1,¥) = 0 (3.39)
oF aF
— (0,p) = — (1L,y) =0 . (3.40)
or or

These equations will be solved numerically in Chapter 5 using various
inner wall temperature profiles in order to study flow behavior and the

multicellular instabilities that may arise.

The Steady-State Perturbation Solution

Rearranging Eq (3.38) results in the following expression for

vorticity:

W=0C —7 - (3.41)

Assumning steady-state conditions and substituting Eq (3.41) in Eq (3.37)
yields:

) oF 8°F oF o°F o'r .,
¢ -——F+——— ==+, -Tpsiny . (342

oy or]  or &l oy
Taking the limit of G » 0, one can derive a perturbative solution to the
governing equations. By examining Eq (3.42) one can deduce the expansion

for stream function to be

F=c P+ G’ F, + occlt) (3.43)
26




and from Eq (3.41), vorticity can be expressed as
n - ~5 -9
_ W=¢C “1 + G “2 + 0(G7) . (3.44)
The first effects of the convective terms come in through F2 and Hz.
- Substituting expansion (3.43) into Eq (3.42), and matching terms of like
coefficients yields the following steady-state result:
. OF
- G™: —% c - (T° - TI) sin y (3.45)
.. &%F oF, °F, oF, o°F
7. 2 | 1 1 1
G : —T=- 3 + p) (3.46)
C ar dy Or or &r° dy
Integrating Eq (3.45) yields,
ra r3 rz
F, = — (T, - T )sinw+C, —+C, —+C,r+C . (3.47)
I' 1 o1 I 0 1 3l 2 2 3 4
The constants of integration are obtained from the boundary conditions of
Eqs (3.39) and (3.40) and result in:
- 2 2 sin y
Fl =r° (r - 1) (TI - To) (3.48)
24
Differentiating Eq (3.47) twice with respect to r yields
1 sin y
' "l =4 r(r-1)4 ; (TI - To) ; . (3.49)

Substituting Eq (3.48) into Eq (3.46) yields
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eF ., 2 sin 2y
—-I? =d6r® - 15r% 4 1erd - 6xt 4 r (1, - To)z ——— . (3.50)
o 24

Integrating Eq (3.50) four times and applying boundary conditions

H; (Eqs 3.39 and 3.40) yields
2 sin 2y r9 r8 r7 r6
FZ = (TI - To) - — —— —
96 1512 336 180 180
r5 r3 r2
$ — - ¢ — (3.51)
360 1512 5040

and Hz becomes

The expressions for Fz and Hz contain the term sin 2y, which may

contribute to the multicellular behavior of the flow field at some

critical value of &. The one-term expansions, found to be

- sin y
F=¢rta-nla -1 (3.53)
24
- 1 sin y
W=CQqr(r-1) + - ('1'I - To) , (3.54)
6 2

provide good approximations in modeling pretransitional flow behavior for
Pr » 0. Since many terms in the perturbation expansion may be required
to capture complex flow behavior, one expects the two-term equations to
be valid for only weakly-nonlinear flow instability. In this study, the

full effects of the nonlinear convective terms were handled by solving

28




the partial diferential equations numerically (see Chapter 4).

Eqs (3.53) and (3.54) represent analytical solutions for the
steady-state pretransitional stream function and vorticity, applicable
throughout the annulus (0 - 2r). 1In this form, a variety of variable
wall temperature conditions can be considered. These temperature
profiles, which can vary with the angular coordinate w, may be used to
model various hot and cold spots on the cylinder walls. Several
interesting variations of the inner cylinder wall temperature are

described in detail in Chapter S. Numerical and analytical solutions

relating to each inner wall temperature variation are also presented and

compared in this chapter.
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IV, Numerical Analysis

There are two topics of discussion in this chapter. The first
describes the finite-differencing method used in solving the coupled set
of governing partial differential equations. These equations are the 2-D
unsteady boundary-layer equations developed in Chapter 3. The second
topic deals with the computational procedure employed to solve the
resulting finite-difference equations. Here, the iteration sequence,
convergence criterion, and relaxation parameters for the numerical
procedure are described.

The basic numerical approach, relating to the zero-Prandtl number
flow regime, was adopted from Fant (1987). In this study, however, the
buoyancy term in the vorticity equation was modified to account for
nonisothermal effects.

In handling the streamwise nonlinear convective terms, a corrected
second-order upwind scheme was used for the boundary-layer equations.

For the radial convective terms, a corrected second-order central
difference expression was employed. This approach ensured numerical
stability when solving highly convective flow problems. The unsteady
form of the equations provided the opportunity to capture both steady and

unsteady behavior when solved in a time-accurate fashion.

The Numerical Method

The 2-D unsteady boundary-layer equations presented in Eqs (3.37)
and (3.38) are discretized using finite-differencing techniques. The

governing equations in discretized form are well-suited for solving on a ﬂ
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high-speed computer system. The computational domain consists of a
cellular mesh formed by the intersection of variably spaced radial lines
with circular arcs concentric with r = 1, The grid nodes are the points
where these radial lines and concentric arcs intersect. The cellular
mesh generalized for variable increments is shown in Figure 4.1. Since
the angular distance between the nodes was kept constant in this model,

the variables (Kb, K,y ...) in Figure 4.1 were simply replaced by the

£
constant K. In general, the use of variable increments in the
computational domain permits the concentration of nodes in areas of large
gradients, such as the boundary-layer regions near the inner and outer
cylinder walls.

For all temperature distributions imposed on the inner cylinder, the
complete annular flow field (0 - 2n1) was numerically resolved. Vertical
sSymmetry was not assumed.

Variable Increment Finite-difference Formulas. The derivatives in
the governing equations are transforeed into variable increment
finite-difference expressions using Taylor series expansions.

Standard expressjons for forward, backward and central differences,
taking into account formal truncation errors for variable increments, are
given in Fant (1987).

For the unateady term in the equations, a stable forward-difference

molecule is used:

op | &t -40
—_ 2 ——— ¢ 0(At) (4.1)
at At

0

where n is the time level at which the dependent variable ¢ is evaluated.
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Finite-Difference Equations for the Dependent Variables. All

spatial derivatives in the governing equations are second-order centrally
(or upwind) differenced. This includes the convective teras in the
vorticity equation (3.37) which are represented by a first-order upwind
expression together with a correction term for second-order accuracy.

The convective terms are split in this manner in order to enhance
numerical stability when resolving secondary flow bshavior. This
procedure is explained in greater detail in Fant (1987). For the
zero-Prandtl boundary-layer equations, only the vorticity and stream
function equations (Eqs 3.37 and 3.38) had to be solved numerically in a
coupled manner. The following one-equation format is used to represent

these two coupled equations:

.y 0 O’ a¢ 2¢
A2 - AG” — + —3 + 2N — 4+ 2u—+ 85 =0 (4.2)
o or ar oy

with the nonlinear convective terms expressed as:

2 — = (A - IA])

o¢ By -@; @ +He - (1+H) @ }
+
or

hb hb + hf

h h, + h

¢ - @ ¢ /H+ @, - (1 +1/H) ¢
b4 m){ 10 11 3 0} (4.3)
£ b

f

and
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r

where ¢ represents the dependent variables T or W, and

Also,

and

where

with

oz | ¢, - ¢ ¢, - 22, + @
u — =(u-|u|){0 4,0 4 10}
ay

¢, - @ 2, - @, - ¢
+(u+|p|){2 0,2 1 ‘2} (4.4)

2N = Al -

2p

H

- A

{
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M
By,
F
_— (4.5a)
oy
OF
1 - — (4.5b)
or
1, ¢=W
A2 =
1, ¢ =F
1, ¢ =W
0, =F




For the radial convective terms (Eq 4.3), the first terms within the
brackets are the first-order upwind-difference components and the second
terms are the added corrections which bring the differencing up to
second-order accuracy. The A terms within the parenthesis ensure that
stable differencing 'into-the-wind' is enforced. since the
boundary-layer equations are only first order in ¥, a corrected
second-order upwind-differenced expression was used to represent the
streamwise convective terms (Eq 4.4). Here, the second term within the
brackets represents the added correction to achieve second-order
accuracy.

Using the above results, the boundary-layer equations are written in

the following finite-difference form:

-
(A2) A G
n+l n n+l n+l n+l
Co% = . P G 0t Tt G
+ ch%"“ + ML, gt (4.6a)
where
~ .2

(A2) A G 2(A2) 1 1
C0 = + + MA [ —_— - - ] + CIx| [ —_ — ]

T hyh he hy h, h

2
6T lul [—] (4.6b)
£
2(42) WY
¢ s ———+T [ ] (4.6¢)
hy (he 4 b) h
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u o+ ful
C, =T [.___...] (4.6d)
¢
2(A2) roe-ah
C3 = - (10.66)
(he + hp) by hy
= (- ()
C, = (4.6%)
K
with
1, ¢=4W
r-= (4L.6g)
0, =F

The correction term En+1 is defined as follows:

n+d A n+l ! +1 n+l !
£ =r[—-—-] ¢, [1-—]+¢3“ (H - 1) - @, [H--]
he + hy H H
Y 1 1

-r[ ]{¢l“”[1+—]+¢3“”(1+m ¢0“"1[2+n+-]}
he + by H H

1
n+l
- 8y, [;]} (4.6h)
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In addition,

Csiny (T (W) - T (W)Y, ¢=8
sl o ' Tourer¥o 1nNER %o (4.61)
_ cz “0n+1, ®=F

where the buoyancy term (Eq 4.61) permits variations in temperature with
w on the inner and outer cylinders.
Boundary Conditions. Considering the complete annulus, the

finite-difference form of the boundary conditions are:

Energy:
n+l
Ti,j = TI(V) (4.7a)
n+l
TNR,j 0 (4.7b)
Vorticity:
1
2F™*
W - R (4.7c)
! (Ghl)
2l..n+1
gntl _ _NR-1,4 (4.7d)
M1 eny, 2
NR-1
Stream Function:
n+l _
Fl,j =0 (4.7e)
n+l !1
FNR,j =0 . (4.7€F)

To satisfy continuity at zero and 2n radians, a computational continuous

condition must be defined such that: -.ﬂ
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n+l n+l
n P10 % P NS+t (4.7g)

where ¢ represents the temperature, vorticity, or stream function.
Again, for further discussion of this differencing procedure, see Fant

- (1987).

The Computational Procedure

The system of coupled finite-difference equations (as described in
the preceding section) are solved implicitly in time using a point
iterative Gauss-Siedel method with underrelaxation. At a given time
level, the dependent variables are found by repeated iterations of the
governing equations.

With the inner and outer wall temperature distributions preset, the
dependent variables were initialized by setting them to zero. Previously
converged results at a particular time level were used as initial
conditions to start the next time level calculations. This procedure was
repeated until steady-state was achieved or unsteady behavior developed.

Iteration Sequence and Convergence Criterion. The boundary-layer

governing equations in finite-difference form were numerically iterated

in the following order:
i. wvorticity equation
ii. stream function equation.

For the small-Prandtl number limiting condition, the energy equation was

integrated analytically.

The above sequence was repeated until successive iterations were

within a prescribed tolerance. The maximum modulus of the difference
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between vorticity and stream function for two successive iteration values

defined the relative convergence constraint, or

m+l,n+l  m,n+l
I ¢ <1 x 108 (4.8)
(¢,+l,n+1) '
nax

where ¢ again represents vorticity or stream function. When Eq (4.8) was

satisfied, the numerical solution was considered con?erged. Here, m

refers to the iteration level and n denotes the time level.
Relaxation Parameters. Two independent relaxation parameters, Ql

and 02 were incorporated into the finite-difference equations to control

the rate of convergence of the iterations. The relaxation parameter,

11
was used in conjunction with the vorticity boundary conditions. For
example, on the inner cylinder:

nel,n+l m,n+l , " 2 _ m,n+l
”1,) = 01 { 2F2 /(Ghl) }+ (1 Ql) wl,j (4.9)

along r = 0, where h1 denotes the radial spacing between the first

ad Jacent node and the wall. Typically, .1 < Ql < .5 was the range used

\

to help stabilize the numerical computations. The second relaxation
parameter, Qz, was used with the second-order upwind differenced
correction terms which were based on the new time level (En+1). The

interior point equations for the vorticity were computed according to:

~ g
(A2)A G
ntl,n¢l _ n m,n+l m,n+l »+1,n+1 m+l,n+l
"0 = ————————-HO + { clul + CZHZ + c3w3 + Cawh
C.7
0
. S-+l,n+l)/ C.+ {0 El+1,n+l + (1 -0 En,n+l)/ C (4.10)
0 2 2 0
For Q} < 1, the differencing of the correction term became a weighted !ﬁ
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average of Gauss-Siedel (current level) and Jacobi (previous level)
iterations. Generally, .1 < CQ < .5 was used in the numerical
computations. For further details on the computational procedure, see
Fant (1987).

Computational Details and Discusgsion. All computational runs were

made using 31 radial nodes and 241 angular nodes for the entire annulus
(0 - 2m). The mesh spacing was slightly compressed by a factor of 1.5
near the inner and outer walls.

For all calcualtions, a scaled time step (Az) of 0.5 was chosen.
This size time step translates to small actual time increments since
; = (Ra/Pr)l/zt. For each test case (inner cylinder temperature
distribution), & values of increasing magnitude were considered until
unsteady behavior resulted. All test cases were started by obtaining the
& = 1.0 flow field. Then for each slightly higher value of &, the flow
conditions from the previous 6 value served as reference data for the new
set of results. When flow instability developed at some value of 6, the
number of iterations for convergence and the computer CPU-time increased
significantly. Only one test case, Tl(v) = 8in ¥, was used to gain
unsteady flow results (see Chapter 5). All other test cases were studied
within the steady-state regime.

Generally, steady-state solutions were achieved within 40 time

steps, although solutions were taken to 500 time steps to ensure

convergence. The amount of CPU-time required to achieve the steady-state

condition was approximately 38.4 seconds, or an average of 0.96 seconds
per time step on the AFIT VAX 8650 computer system. Conversely, about 4

hours CPU-time was required to run 200 time steps when dealing with the -!ﬁ
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unsteady multicellular flow regime. Such time-consuming operations
ll restricted the amount of unsteady flow studies that could be conducted

for this thesis.

41




V. Results and Discussion

In this chapter, the flow fields resulting from various temperature
distributions imposed on the inner cylinder wall are examined. For each
variable inner wall temperature distribution, TI(w), a set of isotherm
and streamline contour plots are presented for flow visualization. In
the streamline contour plots, the numbers embedded in the streamlines
denote stream function strength, where negative values denote
counter-clockwise fluid rotation and positive values denote clockwise
rotation. Positive and negative isotherm lines represent hot and cold
regions, respectively, on the inner cylinder. Steady-state analytical
results are directly compared using plots of vorticity and stream
function data in areas of interest within the annular flow field. In
addition, the unsteady flow regime shall be examined for one of the test

cases described below.

Inner Cylinder Temperature Distributions

Figure 5.1 displays the ten inner cylinder temperature distributions
considered in this study. Test cases (a - f) were chosen to impose
regions of gradual temperature variation around the annulus, as modeled
by simple trignometric functions. More localized hot and cold spots were
modeled in cases (g - j). The presence of localized heating on the inner
cylinder wall reflects a more realistic condition than the isothermal
boundary condition that dominates similar studies in this area. Note
that the circles in Figure 5.1 represent the inner cylinder with the

important features of the temperature distribution drawn in for clarity.
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180° cooled
cooled heated heated <:::::::> heated
0° cooled
f. ’I[ () = - cos(2y)

Tl(w) = sin ¥

cooled

G

heated

b. TI(v) = co8 ¥

fTI =0
1

uniform heating @ TI =

T = {1 + cos y, 90 .< ¥ < 27?
1 , 270 < w ¢ 90

(o]

uniform heating @ TI =1

d. Ti(w) = {1 . .
1, 270°¢w < 90

heated

e

cooled

e. Tl(v) z - CO8 ¥

-cos y, 90° <w< 270

g. Single Hot Spot

h
—
.
@®

h. Dual Hot Spot

Triple Hot Spot

[ 0
.

j. Cold Spot

Figure 5.1. Inner cylinder temperature distributions
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The functional form of the annular temperature variation {s presented to
the left of sketch. More detailed isotherm representations of these test

cases are given in the next section and in Appendix A.

Numerical Results

In this section, several test cases which illustrate the variety of
flow characteristics encountered in this study are discussed. Results of
other temperature distributions are mentioned only briefly, with their
stream function and vorticity plots included in Appendix A for
completeness. In all but a few cases, numerical results were obtained
for (scaled) gap numbers of 3.0 and 4.40 to examine low and moderate
buoyancy effects on the flow circulation within the annulus. Three inner
wall temperature distributions were examined up to the unsteady flow
transition point, with one case ran at a gap number high enough to induce
unsteady effects.

Steady-State Results. Case a, T, = sin y, was found to yield

I
steady-state results for gap numbers up to 4.95. The isotherms for this
temperature distribution are shown in Figure 5.2a. For gap numbers up to
4.93, the flow field exhibited the familiar kidney-shaped cell pattern,
shown in Figure 5.2b, associated with an isothermal inner cylinder

(TI = 1). As Figure 5.2c illustrates, a steady multicellular flow
develops in the vertical portions of the annulus when gap number is
increased to 4.95. This type of flow instability appears to be
hydrodynamic in origin, induced by fluid buoyancy shear effects. The
instability occurs near the hottest/coldest parts of the inner cylinder

(¥ = 90°, 270°). This makes sense physically since this is where the

largest temperature difference between the inner and outer cylinders
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)
occurs for this case (see Figure 5.2a), thus providing the maximum

|| buoyancy force for flow convection in the annulus. Note that both cells
are rotating in the same manner, clockwise. Unsteady results for this
case using 6 = 4.99 are discussed in section 5.2.3.

- Kidney-shaped cellular patterns were also prevalent in cases
c and d, where the upper half of the inner cylinder was cooled or heated
while maintaining isothermal conditions (TI = 1) on the lower half.
Here,the cosine function was employed to produce the greatest
nondimensional temperature diference between the inner and outer
cylinders at y = 180°, where TI(n) = 0 for the cooled case (case d) and

. TI(R) = 2 for the heated case (case c). As shown in Figures (Al a - c)
the effect of cooling on the upper half-cylinder was to shift the
convective circulation toward the bottom of the annulus. The opposite

. effect occurs when the upper half-cylinder is heated (Figures A2 a - c).
Increasing 6 from 3.0, increased the stream function strength but did not
change the basic cell structure. Another type of flow field encountered

[ was the formation of discrete counter-rotating cells induced by

alternating hot and cold regions distributed evenly around the inner

annulus wall. The temperature distribution of 'l‘I = - cos8(2¢) shown in

Figure 5.3a, produced the most complex of these multicellular flow

patterns. Figures 5.3 b and ¢ show the six-cell streamline contours for
gap numbers of 3.0 and 4.40, respectively. Although the temperature

peaks, which occur every 90 degrees, produce identical nondimensional _g#
inner and outer wall temperature differences of 1, the convective cells

at y = 90° and 270° are much larger than the other four. This phenomenon

is due to the influence of buoyancy effects being strongest at these ‘jﬂ
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annular locations, as explicitly shown by the analytical result:

Fl @ sin ¥ (T,(¥))

Also, vertical symmetry of the cell formation is recognized.
Other test cases exhibiting this fliow behavior were the inner wall
temperature distributions T, = - cos wand T

I 1
four counter-rotating cells of equal size and strength. No cells were

= ¢co8 ¥, which produced

predominantly larger due to the equal buoyancy influence at each cellular
location in the annulus. Unlike sin w, the cos ¥ temperature
distribution did not induce a more complex multicellular flow field when
the unsteady flow transition point was reached at 6 = 5.75. The isotherm
and streamline contour plots for TI = cos y and TI = - cos y are found in
Appendix A (Figures A3 a - c and A4 a - c¢).

The test cases involving more localized temperature changes on an
otherwise isothermal inner cylinder (cases g - j), model hot and cold
spots near the top cf the annulus. Case i models a triple hot spot
distribution symmetric about y = 180°, where a temperature peak of 2.5 is
reached. Two secondary peaks of 1.8 are located 2 22° from the vertical
symmetry line (see Figure 5.4 a). As shown in Figures 5.4 b and ¢, these
hot spots induce the beginnings of a secondary cell formation near the
top of the annulus. This flow field is similar to the isothermal case,
except for this localized increased convective activity.

The cold spot of case J (Figure 5.5 a) gives rise to a thermal
instability of two discrete counter-rotating cells near the top of the
annulus. As gap number is increased from 3.0 to 4.40, these small cells

become stronger as does the larger kidney-shaped cells which dominate the

63




uo
1Inq11381p 10ds joy e1dj13 eyl 10j swieylos] ‘ey'g eandiy

64




uorinqrrisyp
jods joy 21dja3 eyl 103 Q°f = H I SSUIWEEIIS [BOjIeWNN °qu°§ eandjg




uojInqriisyp
aeun
jods jo0y e1djal oyy 103 on°y = w 1 SOUI[WEBIIS TBI] N

‘op°¢ eIndiy

66




uoiinqiaisyp
jods joy e1dya) eyl I0J Oh°y = H Ie SEU)[WeSIIS [BOJIA[eUY ‘Pph°¢ @anBj4




-

or'Y

uoyinqraisyp jods joy o1djay eyl ioj
D J® UOTIIdUN] wWPOIIS OUJT-I93USD 3Y) JO uoiiejiea JeinBuy ‘9n‘¢ eandijg

(S33493Q) I1Sd

00 moov OO._onn oo.poon oorOmN
{

1 1

00'002Z
_1

1

oorom i 00°00t

1e21314A10UR

1edjasunu =

1 05 0-

~ 620~

| ozo-

[~ G1°0-

(5'0=4)4

- 01°0~

- 600

h 000

68




uoylnqiiisyp 1ods oy eydyay
eyl 103 Q4% = 9 103 06 1® AIJ0JII0A JO UOJIR}IEA RIPEY “JY°S eandig

JIVNIGHO0D WIAVY
00°1 080 09'0 o*'0 0Zo 000
L 1 | 1 1 L . | [ { 1 ST 0~

- 02°0-

S0~

0L'0-

s0°0-

000

€00

010

ALIDILYOA

S0

oz'o

Sto

080

1edji14eue - €0

d

[edjIeunu

0o¥0

69




uojInqjaisip j10ds joy e1dray oyl 103
D 103 06 1 UOJIOUN] WEEIIE @Yyl jJo uojIE]IRA [BIPEY

31VNIQYO0JD viavy

1eo1314eue

[eo110mNYU

it

00—

—~ S0°0—

000

$0'0

010

S0

(ALY

T

3y ¢ 9anB 3

10

NOILONNS WVIHLS



uof{3jpuoos jods proo ay3 10y SWIIYJOE] °'BG'S 0InB|4




; NN "qg°§ ean3j
31)puod jods piod oyl JI0J €aU}[WESIIE 1esjlewny
0°'¢ = 9 3¢ uo}

12




0%°% = 9 1 UOj1Ipuos jods Plod Oy} JOJ SeuUj[WEEIIS [POjIowWnN ‘O¢'¢ eanBiy

73




0%y = 5 18 uUOljpuoo jods p1od ©Yj) 10] soujjweslls [eojiAjeuy °ps°s eandig

~

74




uofjipuod jods proo sy) 10J
O%°% = D 18 UO}IdUNJ WRBIIE GUJ[-10U8D BY]l jo uojjejies ieynduy *96°¢ oandyy

v

(S33493Q) ISd

00°00¥ oo._On £ oo._OOn oo._OnN 00°00Z aag ._Qn t 00°001

L 1 1 1 j | 1 ) 0c 0~

- 20—

ﬁu ot'0-

- G10- T
N
P
1
o
- oo~
- 00—
- 00°0—
1eo134jeue
(edjaemnu =
— C0°0
3
)
R | _ F || A i

15




. ) uojjjpuod jods
P10D 8Y3 103 g%y = 5 X103 06 3¢ AI}2]310A JO UOJIR|IRA [RIPRY ‘JG'G eandg

v

J1VNIQJOO0D WVIavY
0ot 080 090 o¥'0 0Z'0 000
1 _ 1 | 1 ﬂNO'

- 020~
- G140~
- 01°0-
— S0'0-

— 000

76

—~ S0°0

ALIDILYOA

- 070
— §2°0

- 05°0
1eajikeue

- §£°0

d

{eoj1emnu
oro




uoj3ljpuod jods prod 9yl 10}
Oy = 9 10 06 1¢ UOJIOUNJ WEOIIE O]l Jo UOjIE}IRA (EIpEY

3LVNIGYJOO0D viavy

) -

090
|

or0 0Z0
1 1 L 1 Y

*8¢°¢ eand14

000

1est134eue

[edjxeunu

v/

0i0-

B S0'0-

000

s00

aLo

- 020

- ¢Z0

NOILONNS WVIILS

¢

17

L S




flow field (see Figures 5.5 b and c). Note that this convective behavior
resembles the thermal instability of air (Pr = .7) in an isothermally
heated narrow annulus.

Cases g and h, presented in Figures A5 a - c and A6 a - ¢ in
Appendix A, model single and dual hot spots, respectively. These
temperature distributions produce simply an elongation of the upper
portion of the kidney-shaped counter-rotating cells. Strong secondary
cell formation does not occur as in case i, where the sharp central peak
contributes to this condition. As with cases i and j, increasing gap
number to 4.40 only increases the stream function strength without
altering the basic cell pattern.

Analytical Comparison. The analytical perturbation expressions

derived in Chapter III, from the zero-Prandtl number boundary-layer
equations were used as checks to the steady-state numerical results.
These comparisons support both the flow fields found by the numerical
procedure and the analytical analysis itself.

The two-term perturbation expressions for stream function and
vorticity were used to generate comparative data for the pretransitional
numerical results. Stream function and vorticity were compared at the
angular coordinate where maximum stream function occurred for 0 < r = 1.
Comparison of stream function data was also made at the annulus
centerline (r = .5) for 180° < w < 360 . For each test case, the
comparative data was generated for the largest gap number used in the
numerical analysis of section 5.2.1.

The temperature distribution, TI(w) = 8in yw, demonstrates the limits

of the analytical formulation in describing pretransitional flows.
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Figure 5.2 d shows how the analytically generated streamlines for

& = 4,95 resemble the numerical result of 6 = 4.93 (Figure 5.2 b), while
failing to capture the numerically-generated multicellular flow structure
of Figure 5.2 ¢ (for & = 4.95)., Figures 5.2 e - g explicitly show the
analytical agreement with & = 4.93 numerical data, while Figures 5.2 h -]
highlight the descrepancies in the E = 4.95 results. analytical vs.
numerical comparison plots for stream function and vorticity (Figures h
and i) indicate significant differences in the solution where stream
function strength is maximum. This difference is also seen along the
centerline (Figure 5.2 j) where descrepancies exist for 225° < w < 300°.
This is the multicellular region which could not be resolved by the
two-term perturbation result.

All other cases exhibited very close agreement when comparing
analytical and numerical solutions, except for case c; the cooled upper
half-cylinder. As Figures Al 4 - g show, the descrepancies were not as
dramatic as the sin w case, particularly for the centerline comparison.
These descrepancies were due to the use of the transitional gap number
for this case (6 = 4.71) to generate comparison data. Although the cos ¥
test case was evaluated at its transitional gap number (as sin w was for
E = 4.,95), no discernable differences in the data was noted. From this,
one might conclude that discrete, counter-rotating cells tend to
stabilize the flow field compared to the kidney-shaped cell pattern.
since the comparison data for the other seven cases were within the
steady-state or pretransitional zone, no descrepancies were found (as
expected). The comparison plots are included with each test case

following the flow field contour plots.
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Unsteady Results. Only the sin ¥ inner cylinder temperature
distribution was numerically studied in the unsteady flow regime. As
mentioned in section 5.2.1, a gap number of 4.99 induced unsteady flow
behavior in the annulus. The solution was carried out to E = 1000 to
further study this unsteady development. Flow field plots, corresponding
to ; = 200, 400, 600 and 800 are presented in Figures 5.6 a - d. As time
progressed, the weaker cells diminished and softened in structure. Then,
as seen in Figure 5.6d, some re-strengthening of the cell pattern
occurred near E = 800. Due to time considerations (on the average, 200
time steps required 4 hours of CPU time), the solution was not carried
out further to determine if this cyclic-like flow behavior persisted.

Although, it appears that some type of cellular structure interaction is

occurring in the vertical portion of the annulus.
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VI. Conclusions and Recommendations

The influence of variable inner wall temperature distributions have
direct effects on the formation of multicellular convection flows in
narrow horizontal concentric annuli for both steady-state and unsteady
flow regimes. For most test cases examined in this study, the two-terms
analytical perturbation expressions of Chapter III provided excellent
agreement with pretransitional numerical results for steady-state flows.
These solutions begin to diverge, however, when the point of transition
to the unsteady flow regime is reached, as shown explicitly by the sin y
test case of chapter V. This is to be expected, since the analytical
formulation is derived on the assumption of steady-state conditions and
cannot capture any time-dependent multicellular flow field behavior.
These solutions are therefore best suited for quick flow field
visualization of steady-state cogvection in the annulus subject to
variable inner wall temperature conditions.

Abrupt temperature changes on the upper cylinder surface (hot or
cold spots) give rise to small, discrete convective cells, especially in
the horizontal section of the annulus, which resemble thermal
instabilities characteristic of air in a narrow horizontal enclosure.
This is in contrast to the instabflity formed in the vertical portions of
the annulus by isothermal or gradually-varying inner wall temperature
conditions. This instability is hydrodynamic in origin, induced by
buoyancy forces.

In the context of a simplified set of governing equations, one can

obtain a multitude of cellular structures in the annular flow field.
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Such complex convective flow behavior may enhance heat transfer of
systems employing the concentric cylinder geometry for cooling or
insulation purposes. Understanding the inner wall conditions that cause
such phenomenon is central to this analysis.

In order to gain further insight into the formation of discrete
multicellular steady-state flow fields, more studies are recommended in
the pretransitional regime using a variety of hot and cold spots on the
lower and side portions of the inner cylinder. In addition, more
numerical work should be performed in the unsteady and transitional flow
regimes for a variety of inner cylinder temperature distributions to
study the nature of unsteady multicellular instabilities. Experimental
studies of low Prandtl-number fluid convection are strongly recoamended
for the narrow-gap concentric cylinder geometry with variable inner wall
temperature conditions to verify the limited numerical work performed in
this area.

Additional numerical and analytical work is also recommended to
study how finite Prandtl-number fluids effect the solutions obtained for
the test cases examined in this thesis. Such research would offer
insight into the behavior of viscous fluids under variable inner wall
temperature boundary conditions within a narrow annular enclosure.

Finally, a parametric study of the numerical grid could be performed
to see how grid density affects the flow field solutions, perhaps
indicating an optimal configuration for resolving multicellular flow

behavior.
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. Appendix A

Supplementary Flow Field Data
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The purpose of this study was to examine natural convection within a
narrow horizontal annulus subject to variable inner cylinder temperature
distributions. Both numericai and analytical approaches were taken in
determining the effects of variable temperature conditions imposed on the
inner cylinder in triggering or suppressing multicellular flow
instabilities.

The two-dimensional Navier-Stokes equations are simplified into
boundary-layer equations for the assumptions of large Rayleigh number,
small annular gap, and small Prandtl number. These 2-D unsteady
boundary-layer equations are discretized using finite-differencing
techniques. Numerical solutions to these governing equations are then
obtained by using a stable second-order, fully-implicit, time-accurate,
Gauss-Siedel iterative procedure. In addition, analytical steady-state
solutions to these simplified equations are obtained using perturbation
methods. 7L7141i142<7 . {7L!j>l'xn i) éffij"““

For most inner cylinder temperaturé distributions considered in the
steady flow regime, these analytical results yield excellent agreement
Wwith numerical results. Although both schemes predict the formation of
thermal-like instabilities induced by localized hot and cold spots in the
horizontal annular regions, the analytical model failed to predict the
steady-state multicellular hydrodynamic instabilities found numerically
for the sin % temperature distribution at E = 4.95 in the vertical
portions of the annulus. The analytical model also fails to capture
unsteady multicellullar flow behavior found numerically for the

sinusoidal temperature distribution at G = 4.99,.




